
 Expressing Discrete Inter-Agent Dynamics:
Messaging & Events

Nathaniel Osgood

3-1-2011

Discrete Agent Coupling via Messages

• Within AnyLogic, agents can be coupled by either
discrete (instantaneous and individuated) or
continuous (ongoing and gradual) coupling

• The preferred mechanism for discrete coupling is
messages sent between agents
– Many types of messages payloads are possible

– An agent can send a given message to one or more
agents

– Frequently messages are sent locally to neighbors within
the environment
• Neighboring nodes on the network

• Nearby neighbors in space

Messages & Statecharts

• Messages may be handled in many ways

• One of the most common ways in which messages
are handled is by statecharts

– A transition can be triggered (“guarded” or gated) by a
message

– A transition may be associated with an action that fires
off a message to other agents (or to other statecharts
within the agent)

Receiving a Message

• In this case,
only 1 message
type exists, so
the simple
fact that a
message has
been received
is sufficient;
there is no
need to inspect
message contents

Sending a
Message

• (Self-transition
because remains
in state)

Message Sending

• Messages may be sent to either
– A particular, explicitly specified agent

– An implicitly specified class of agents
• Neighboring agents in the environment topology

• Random agents

• All agents

• Any connected agents

• All connected agents

• Mechanism:
– send(Message, DestinationObject)

– send(Message, AgentClassId)

Synchronous vs. Asynchronous
Delivery

• Messages may be sent in two ways

– Via send: Asynchronous

• Delivery occurs sometime after call to send

– Via deliver

• Synchronous

• Risks infinite loops in delivery (if destination also calls
deliver in the reverse direction)

Message Payloads

• Sometimes just the fact that a message has been
sent provides us with all of the information we need

• Sometimes just distinguishing different message
types is sufficient

• We will sometimes send messages with payloads of
data that provide extra information, e.g.

– The agent that sent the message (eg that is infecting us)

– Particular parameters

• Can send multiple message types

– Boolean/int/double/String/Other (can specify class type)

Sending a Message with a String Payload

Sending a Message with Object Payload

Receiving a Message: Forwarding
Messages on to the Statechart

The action for
Handling received
messages
delegates to the
Statechart object

Receiving a Message

Building Up a Simple Agent-Based Model:
The Manual Technique

Add a New Model Project

Filling in the Model Project Details

Add an Active Object Class

Filling in the Agent Class Details

The Updated Project

Declaring “Person” as an Agent

Check this box!

Updated Result

Note changed icon

Double-Click on “Person” &
Scroll Until you See The Cross-Hairs

This is the grid origin.
To be centred on their spatial
location, the Person’s presentation
Items should be placed here.

Create an Oval at the Origin (Cross-Hairs)

From the Centre of the Oval, Draw a Line

The “+” on the end of
the line should be at the
centre of the oval

Set the “Replication” Dynamic property of
the Line so there is 1 for each connection

Make sure you
have selected
the line by clicking
on it!

Make sure you
have selected
the “Dynamic” tab!

Also set the “dX” and “dY” properties

Double Click on “Main” class Name to View
this it (Should Appear on Top Tab)

Double Click Here!

Click and Drag from “Person” into the
Space on the Right

Drag to Here!
Drag from
Here!

Set the Count of Agents in the Agent
Population

For Clarity, Rename “Person” to “Population”

Add an Environment

Drag to Here!

Drag from
Here!

Set the Network Type to Use

Make the Population Depend on the
Environment (for placement, connections, etc.)

Try Running the Model!

Adding “Color” Variable

Make sure this is in lower
case!

Fill in the
type and Initial
Value
(watch
for correct
case!!)

This is the name
of a Java class!

Make Oval “Color” property Use Variable

Make sure you
have selected
the Oval by clicking
on it! Make sure you

have selected
the “Dynamic” tab!

Add Entry Point of State chart

Add in “Susceptible” State

Connect with Entry Point

When this really connects,
The circle should be green
(see tip at end of presentation)

Fill In Code to Color Green when Enter State

Adding in “Infective” State

Set to Color Red when Enter State

Adding Transition

When this really connects on both
sides, circles should be green

Adding Infection Clearance Transition

Run the Model!

Completing Set-Up

Press this button to start model
execution

Model Presentation

Making Infection Depend on a Message

Make sure you
have selected
the transition by
clicking on it!

Using a “Contact” Event to Spread Infection

Add this
transition

Setting “Person” so forwards Infection
Message to Statechart

Make sure the “Agent”
Tab is selected!

Setting Startup Code So Initially Infects a
Random Person (so start with 1 infective)

Infection Percolation over the Network

Tip: Beware Loose Connections

Corrected

